
Hardware Support for Dynamic Protocol Stacks

Ariane Keller Daniel Borkmann Stephan Neuhaus
ETH Zurich

Zurich, Switzerland
first.last@tik.ee.ethz.ch

ABSTRACT
Most networking performance enhancements occur through
specific static solutions, where the structure of the proto-
col stack remains unchanged. Instead, we focus on a flexi-
ble software and hardware co-design for the entire protocol
stack. In this paper, we present EmbedNet, a System-on-
Chip implementation of a flexible network architecture for
the Future Internet, where parts of the protocol stack can
be moved between software and hardware at runtime. This
enables the construction of dynamic protocol stacks that use
available resources optimally.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
HW/SW Codesign, network node architecture, future Inter-
net, FPGA

1. INTRODUCTION
The tremendous success of the Internet can be attributed

to the diversity of supported physical transport media, which
allows users to be connected always and everywhere; and its
plethora of applications that offers something for anyone.
With the addition of more and more features to the original
Internet architecture (such as firewalls, VPNs, NATs, P2P,
etc.) the question arises whether the Internet architecture
ought to be redesigned from scratch. Several research ini-
tiatives [1, 2, 4] supported work in the area of clean slate
architectures. In the context of such an initiative, we sug-
gested in earlier work [6, 7] to split network functionality
into individual functional blocks (FBs) that can be assem-
bled into optimized protocol stacks at runtime. However, it
was never clear how such protocol stacks could benefit from
hardware accelerators, for example for checksum calculation,
encryption or intrusion prevention. A state-of-the-art ASIC
implementation is unsuitable since the provided functional-
ity is fixed and cannot be optimized at runtime.

In this paper we present EmbedNet, a dynamic protocol
stack System-on-Chip (SoC) implementation on a state-of-
the-art FPGA (Virtex-6 ML605 evaluation board [5]). This

Copyright is held by the author/owner(s).
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
ACM 978-1-4503-1685-9/12/10.

FPGA hosts a softcore MicroBlaze CPU [3] capable of run-
ning Linux, as well as several hardware threads that are en-
abled to do interprocess communication (shared memory,
message passing) with the Linux kernel space. These mecha-
nisms are provided by ReconOS, an operating system exten-
sion for reconfigurable hardware [8]. The hardware threads
can be reconfigured while other parts of the FPGA are pro-
cessing data.

In EmbedNet, FBs can be executed either in the Linux
kernel space or in a hardware thread. Since hardware threads
can be reconfigured at runtime, the mapping of functional
blocks between hardware and software can be optimized
with respect to the current network traffic mix. In this paper
we present the architecture of EmbedNet and a performance
analysis of the first prototype implementation.

2. EMBEDNET
The overall EmbedNet architecture is depicted in Figure

1. Packets are sent from an application through a BSD
socket to the Linux kernel. Here, packets are forwarded
between the individual FBs by a packet processing engine.
Each FB has an associated flag that determines whether the
FB is currently executed in hardware or in software. If the
FB should be executed in hardware the PPE copies it to the
memory region that is shared with the hardware and notifies
the hardware of the new packet. The hardware then reads
the packet from the shared memory and forwards it to the
next FB. From there it can be either sent to another FB in
hardware, software or to the Ethernet interface.

In hardware packets are forwarded in a network on chip
(NoC) consisting of switches arranged in a unidirectional
ring. Each switch is also connected to a configurable number
of functional blocks. A software controller configures the
FBs with the addresses of the other FBs so that packets can
be forwarded correctly.

3. EVALUATION
We evaluated the correct functioning of the EmbedNet

node with the scenario depicted in Figure 2. In a first step,
an application sends packets through the Ethernet FB to
another node. In a second step, we add a software FB while
the application continues to send data. Eventually, in a third
step, we move this FB to the hardware. In order to evaluate
the change of the protocol stack, the FBs in software and
hardware were implemented slightly different. Thus, on the
packet collecting node, we are able to see a change in the
payload pattern of the received packets.

Device Driver

Applications

PPE

FB_1

FB_n

Linux userspace
Linux kernelspace

BSD Socket Interface
FB_s

Interconnect

FB_s2h FB_h2s

Ethernet FB_x

Physical
Interface

FB_y

Hardware
Software

Figure 1: Architecture of EmbedNet.

Application

Ethernet

Application

Ethernet

Dummy

Application

Ethernet

Dummy

hardware

software

kernel space

user space

time

a) b) c)

Figure 2: Functional evaluation setup.

We evaluated the maximum sending rate of EmbedNet in
different scenarios (see Figure 3). The baseline evaluation
reveals a maximum packet sending rate of 4’000 minimum-
sized packets per second from normal Linux raw sockets on
the ML605 evaluation board. This rather low rate might be
due to the low MicroBlaze CPU frequency and a non DMA-
capable network IP core. Exchanging the Linux raw sockets
with PF LANA sockets—a new socket class for EmbedNet—
shows that PF LANA (without hardware support) is cur-
rently about 1’000 packets per second slower. A second
baseline evaluation showed that the sending rate of packets
from within the Linux kernel using the EmbedNet hardware
is almost independent from the payload size. Sending pack-
ets from PF LANA trough the EmbedNet hardware is again
about 1’000 packets per second slower.

This suggests that the limiting factor is the handshake re-
quired to transmit data over the software/hardware bound-
ary. Therefore, we plan to implement a ring buffer in which
several packets can be transmitted at once. This should
increase the performance by a factor corresponding to the
number of packets in this buffer.

We also measured the maximum throughput of the hard-
ware by sending packets from an external node to EmbedNet
where it was forwarded to a dummy FB (which does nothing)
and back to the Ethernet FB. The maximum throughput is
currently 0.8 Gbit/s which corresponds to the forwarding
rate of the switches (8 bits at 100 MHz). In the future we
plan to run the switches at 125 MHz which would allow for
line rate forwarding.

 0

 1000

 2000

 3000

 4000

 5000

 0 200 400 600 800 1000 1200 1400 1600

pp
s

Packet size in bytes

Maximum Send Packet Rate

raw socket
pf_lana no hw

kernel
pf_lana hw

Figure 3: Maximum sending rate comparison.

4. CONCLUSIONS AND FUTURE WORK
We showed that FPGAs can be used to provide hardware

support for dynamic protocol stacks, but that the softcore
CPUs currently used with FPGAs are rather slow and there-
fore the overall throughput small. This suggests implement-
ing as much functionality as possible in hardware and to
implement a ring buffer between hardware and software to
decrease the load on the CPU.

In order to provide an optimal mapping of functional blocks
to either hardware and software, we are currently working
on a controller that determines the best mapping at runtime
based on the packets to process.

5. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union Seventh Framework Programme
under grant agreement n◦ 257906.

6. REFERENCES
[1] FIND – Future Internet Design (FIND) - US National

Science Foundation. At http://www.nets-find.net/,
(May 09).

[2] Future Internet Research and Experimentation (FIRE)
initiative. http://cordis.europa.eu/fp7/ict/fire, (May
09).

[3] MicroBlaze Soft Processor Core.
http://www.xilinx.com/tools/microblaze.htm.

[4] NWGN – New-Generation Network R&D Project -
Japan. At http://nwgn.nict.go.jp/index e.html, (June
10).

[5] Virtex-6 FPGA ML605 Evaluation Kit.
http://www.xilinx.com/products/boards-and-kits/EK-
V6-ML605-G.htm.

[6] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid,
A. Keller, and M. May. The autonomic network
architecture (ANA). Selected Areas in Communications,
IEEE Journal on, 28(1):4 –14, Jan. 2010.

[7] A. Keller, D. Borkmann, and W. Mühlbauer. Efficient
implementation of dynamic protocol stacks. In ANCS,
pages 83–84, Washington, DC, USA, oct 2011. IEEE
Computer Society.

[8] E. Lübbers and M. Platzner. ReconOS: An RTOS
supporting hard- and software threads. IEEE Int. Conf.
on Field Programmable Logic and Applications, 2007.

