
Linux’ packet mmap(2), BPF, and Netsniff-NG
(Plumber’s guide to find the needle in the network packet haystack.)

Daniel Borkmann
<borkmann@redhat.com>
Core Networking Group

Red Hat Switzerland

DevConf.CZ, Brno, February 20, 2013

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 1 / 28



Background

Useful to have raw access to network packet data in user space
Analysis of network problems
Debugging tool for network (protocol-)development
Traffic monitoring, security auditing and more

Linux: two socket families provide such access
socket(PF INET, SOCK RAW, IPPROTO {RAW,UDP,TCP,...});
socket(PF PACKET, SOCK DGRAM, htons(ETH P ALL));

Only access to IP header or above, and payload

socket(PF PACKET, SOCK RAW, htons(ETH P ALL));

Access to all headers and payload → our focus in this talk

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 2 / 28



Background

Useful to have raw access to network packet data in user space
Analysis of network problems
Debugging tool for network (protocol-)development
Traffic monitoring, security auditing and more

Linux: two socket families provide such access
socket(PF INET, SOCK RAW, IPPROTO {RAW,UDP,TCP,...});
socket(PF PACKET, SOCK DGRAM, htons(ETH P ALL));

Only access to IP header or above, and payload

socket(PF PACKET, SOCK RAW, htons(ETH P ALL));

Access to all headers and payload → our focus in this talk

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 2 / 28



Real-world Users of PF PACKET

libpcap and all tools that use this library
Used only for packet reception in user space
tcpdump, Wireshark, nmap, Snort, Bro, Ettercap, EtherApe, dSniff,
hping3, p0f, kismet, ngrep, aircrack-ng, and many many more

netsniff-ng toolkit (later on in this talk)

And many other projects, also in the proprietary industry

Thus, this concerns a huge user base that PF PACKET is serving!

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 3 / 28



Real-world Users of PF PACKET

libpcap and all tools that use this library
Used only for packet reception in user space
tcpdump, Wireshark, nmap, Snort, Bro, Ettercap, EtherApe, dSniff,
hping3, p0f, kismet, ngrep, aircrack-ng, and many many more

netsniff-ng toolkit (later on in this talk)

And many other projects, also in the proprietary industry

Thus, this concerns a huge user base that PF PACKET is serving!

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 3 / 28



Real-world Users of PF PACKET

libpcap and all tools that use this library
Used only for packet reception in user space
tcpdump, Wireshark, nmap, Snort, Bro, Ettercap, EtherApe, dSniff,
hping3, p0f, kismet, ngrep, aircrack-ng, and many many more

netsniff-ng toolkit (later on in this talk)

And many other projects, also in the proprietary industry

Thus, this concerns a huge user base that PF PACKET is serving!

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 3 / 28



Minimal Example of PF PACKET
int main(int argc, char **argv)
{

int sock, num = 10;
ssize_t ret = 1;
char pkt[2048];
struct sockaddr_ll sa = {

.sll_family = PF_PACKET,

.sll_halen = ETH_ALEN,
};

sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_IP));
assert(sock > 0);

sa.sll_ifindex = if_nametoindex("lo");
while (num-- > 0 && ret > 0) {

ret = recvfrom(sock, pkt, sizeof(pkt), 0, NULL, NULL);
if (ret > 0)

ret = sendto(sock, pkt, ret, 0, (struct sockaddr *)&sa,
sizeof(sa));

}

close(sock);
return 0;

}
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 4 / 28



Issues from this Example

sendto(2), recvfrom(2) calls for each packet
Context switches and buffer copies between address spaces

How can this be further improved (AF PACKET features)?1

Zero-copy RX/TX ring buffer (“packet mmap(2)”)
“Avoid obvious waste” principle

Socket clustering (“packet fanout”) with e.g. CPU pinning
“Leverage off system components” principle (i.e. exploit locality)

Linux socket filtering (Berkeley Packet Filter)
“Shift computation in time” principle

1Principle names from: “G. Varghese, Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices.”

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 5 / 28



Issues from this Example

sendto(2), recvfrom(2) calls for each packet
Context switches and buffer copies between address spaces

How can this be further improved (AF PACKET features)?1

Zero-copy RX/TX ring buffer (“packet mmap(2)”)
“Avoid obvious waste” principle

Socket clustering (“packet fanout”) with e.g. CPU pinning
“Leverage off system components” principle (i.e. exploit locality)

Linux socket filtering (Berkeley Packet Filter)
“Shift computation in time” principle

1Principle names from: “G. Varghese, Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices.”

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 5 / 28



Issues from this Example

sendto(2), recvfrom(2) calls for each packet
Context switches and buffer copies between address spaces

How can this be further improved (AF PACKET features)?1

Zero-copy RX/TX ring buffer (“packet mmap(2)”)
“Avoid obvious waste” principle

Socket clustering (“packet fanout”) with e.g. CPU pinning
“Leverage off system components” principle (i.e. exploit locality)

Linux socket filtering (Berkeley Packet Filter)
“Shift computation in time” principle

1Principle names from: “G. Varghese, Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices.”

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 5 / 28



Issues from this Example

sendto(2), recvfrom(2) calls for each packet
Context switches and buffer copies between address spaces

How can this be further improved (AF PACKET features)?1

Zero-copy RX/TX ring buffer (“packet mmap(2)”)
“Avoid obvious waste” principle

Socket clustering (“packet fanout”) with e.g. CPU pinning
“Leverage off system components” principle (i.e. exploit locality)

Linux socket filtering (Berkeley Packet Filter)
“Shift computation in time” principle

1Principle names from: “G. Varghese, Network Algorithmics: An Interdisciplinary Approach
to Designing Fast Networked Devices.”

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 5 / 28



AF PACKET mmap(2), RX architecture

NIC

do_IRQ (NIC handler)

Schedule NAPI

do_softirq

net_rx_action

__netif_receive_skb

deliver_skb

SoftIRQ

IRQ

tpacket_rcv (mmap)AF_PACKET
(mmap(2))

run_filter (BPF filter)

mmap(2)ed
RX_RING

Fill Ring Meta Data
(TPACKET_V1/2/3)

skb_copy_bits

User space application

poll

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 6 / 28



AF PACKET mmap(2), TX architecture

ndo_start_xmit / NIC

SoftIRQ

AF_PACKET
(mmap(2))

mmap(2)ed
TX_RING

User space application

Fill Ring Meta Data
(TPACKET_V1/2/3)sendto

(trigger kernel)

packet_sendmsg

tpacket_snd

Sets ring pages
as skb frags

Scans over ring
prepares skbs

dev_queue_xmit

dev_hard_start_xmit
(for virtual devices)

qdisc->enqueue
(traffic mgmt layer)

__qdisc_run

dev_hard_start_xmit

__skb_linearize

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 7 / 28



BPF architecture (’92)

A reg
(accumulator)

X reg
(temp. store)

MEM regs
(memory store, 16 regs)

skb->data
(packet payload)

IP

ID

Van Jacobson, Steven McCanne, the filter system for Linux, BSD

Kernel virtual machine, net/core/filter.c: sk run filter()

JIT compilers for: x86/x86 64, SPARC, PowerPC, ARM, s390

Instruction categories: load, store, branch, alu, return, misc

Own kernel extensions, e.g. access cpu number, vlan tag, ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 8 / 28



BPF architecture (’92)

A reg
(accumulator)

X reg
(temp. store)

MEM regs
(memory store, 16 regs)

skb->data
(packet payload)

IP

ID

Van Jacobson, Steven McCanne, the filter system for Linux, BSD

Kernel virtual machine, net/core/filter.c: sk run filter()

JIT compilers for: x86/x86 64, SPARC, PowerPC, ARM, s390

Instruction categories: load, store, branch, alu, return, misc

Own kernel extensions, e.g. access cpu number, vlan tag, ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 8 / 28



BPF architecture (’92)

A reg
(accumulator)

X reg
(temp. store)

MEM regs
(memory store, 16 regs)

skb->data
(packet payload)

IP

ID

Van Jacobson, Steven McCanne, the filter system for Linux, BSD

Kernel virtual machine, net/core/filter.c: sk run filter()

JIT compilers for: x86/x86 64, SPARC, PowerPC, ARM, s390

Instruction categories: load, store, branch, alu, return, misc

Own kernel extensions, e.g. access cpu number, vlan tag, ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 8 / 28



BPF architecture (’92)

A reg
(accumulator)

X reg
(temp. store)

MEM regs
(memory store, 16 regs)

skb->data
(packet payload)

IP

ID

Van Jacobson, Steven McCanne, the filter system for Linux, BSD

Kernel virtual machine, net/core/filter.c: sk run filter()

JIT compilers for: x86/x86 64, SPARC, PowerPC, ARM, s390

Instruction categories: load, store, branch, alu, return, misc

Own kernel extensions, e.g. access cpu number, vlan tag, ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 8 / 28



BPF architecture (’92)

A reg
(accumulator)

X reg
(temp. store)

MEM regs
(memory store, 16 regs)

skb->data
(packet payload)

IP

ID

Van Jacobson, Steven McCanne, the filter system for Linux, BSD

Kernel virtual machine, net/core/filter.c: sk run filter()

JIT compilers for: x86/x86 64, SPARC, PowerPC, ARM, s390

Instruction categories: load, store, branch, alu, return, misc

Own kernel extensions, e.g. access cpu number, vlan tag, ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 8 / 28



BPF architecture (’92)

A reg
(accumulator)

X reg
(temp. store)

MEM regs
(memory store, 16 regs)

skb->data
(packet payload)

IP

ID

Van Jacobson, Steven McCanne, the filter system for Linux, BSD

Kernel virtual machine, net/core/filter.c: sk run filter()

JIT compilers for: x86/x86 64, SPARC, PowerPC, ARM, s390

Instruction categories: load, store, branch, alu, return, misc

Own kernel extensions, e.g. access cpu number, vlan tag, ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 8 / 28



Netsniff-NG Toolkit

Useful networking toolkit for daily kernel plumbing, security auditing,
system monitoring or administration

Consists of netsniff-ng, trafgen, astraceroute, curvetun, ifpps,
bpfc, flowtop, mausezahn

Core developers: Daniel Borkmann2, Tobias Klauser2, Markus Amend,
Emmanuel Roullit, Christoph Jäger, Jon Schipp (documentation)

git clone git://github.com/borkmann/netsniff-ng.git

Project since 2009, started just for fun; GNU GPL, version 2.0

Here, round trip of: trafgen, mausezahn, ifpps, bpfc, netsniff-ng

2Project Maintainer
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 9 / 28

git://github.com/borkmann/netsniff-ng.git


Netsniff-NG Toolkit

Useful networking toolkit for daily kernel plumbing, security auditing,
system monitoring or administration

Consists of netsniff-ng, trafgen, astraceroute, curvetun, ifpps,
bpfc, flowtop, mausezahn

Core developers: Daniel Borkmann2, Tobias Klauser2, Markus Amend,
Emmanuel Roullit, Christoph Jäger, Jon Schipp (documentation)

git clone git://github.com/borkmann/netsniff-ng.git

Project since 2009, started just for fun; GNU GPL, version 2.0

Here, round trip of: trafgen, mausezahn, ifpps, bpfc, netsniff-ng

2Project Maintainer
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 9 / 28

git://github.com/borkmann/netsniff-ng.git


Netsniff-NG Toolkit

Useful networking toolkit for daily kernel plumbing, security auditing,
system monitoring or administration

Consists of netsniff-ng, trafgen, astraceroute, curvetun, ifpps,
bpfc, flowtop, mausezahn

Core developers: Daniel Borkmann2, Tobias Klauser2, Markus Amend,
Emmanuel Roullit, Christoph Jäger, Jon Schipp (documentation)

git clone git://github.com/borkmann/netsniff-ng.git

Project since 2009, started just for fun; GNU GPL, version 2.0

Here, round trip of: trafgen, mausezahn, ifpps, bpfc, netsniff-ng

2Project Maintainer
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 9 / 28

git://github.com/borkmann/netsniff-ng.git


Netsniff-NG Toolkit

Useful networking toolkit for daily kernel plumbing, security auditing,
system monitoring or administration

Consists of netsniff-ng, trafgen, astraceroute, curvetun, ifpps,
bpfc, flowtop, mausezahn

Core developers: Daniel Borkmann2, Tobias Klauser2, Markus Amend,
Emmanuel Roullit, Christoph Jäger, Jon Schipp (documentation)

git clone git://github.com/borkmann/netsniff-ng.git

Project since 2009, started just for fun; GNU GPL, version 2.0

Here, round trip of: trafgen, mausezahn, ifpps, bpfc, netsniff-ng

2Project Maintainer
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 9 / 28

git://github.com/borkmann/netsniff-ng.git


Netsniff-NG Toolkit

Useful networking toolkit for daily kernel plumbing, security auditing,
system monitoring or administration

Consists of netsniff-ng, trafgen, astraceroute, curvetun, ifpps,
bpfc, flowtop, mausezahn

Core developers: Daniel Borkmann2, Tobias Klauser2, Markus Amend,
Emmanuel Roullit, Christoph Jäger, Jon Schipp (documentation)

git clone git://github.com/borkmann/netsniff-ng.git

Project since 2009, started just for fun; GNU GPL, version 2.0

Here, round trip of: trafgen, mausezahn, ifpps, bpfc, netsniff-ng

2Project Maintainer
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 9 / 28

git://github.com/borkmann/netsniff-ng.git


Netsniff-NG Toolkit

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 10 / 28



trafgen
Fast multithreaded low-level network traffic generator
Uses AF PACKET sockets with mmap(2)’ed TX RING
Powerful packet configuration syntax, more flexible than pktgen

1.0e+05
2.0e+05
3.0e+05
4.0e+05
5.0e+05
6.0e+05
7.0e+05
8.0e+05
9.0e+05
1.0e+06
1.1e+06
1.2e+06
1.3e+06
1.4e+06
1.5e+06

 64
 250

 500
 750

 1000

 1500

Tr
a

n
sm

it
te

d
 P

a
ck

e
ts

 p
e

r 
S

e
co

n
d

Packet Size in Bytes

Traffic Generators, Gigabit Ethernet

trafgen mausezahn pktgen

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 11 / 28



trafgen, Examples

Usual work mode (all CPUs, send conf through C preprocessor):
trafgen --dev eth0 --conf tcp syn test --cpp

Injection of raw 802.11 frames (yes, also works with TX RING):
trafgen --dev wlan0 --rfraw --conf beacon test --cpus 2

Device smoke/fuzz testing with ICMP probes:
trafgen --dev eth0 --conf stack fuzzing \
--smoke-test 10.0.0.2

Machinea (trafgen, 10.0.0.1) ←→ Machineb (victim, 10.0.0.2)
Will print last packet, seed, iteration if machine gets unresponsive

Plus, you can combine trafgen with tc(8), e.g. netem

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 12 / 28



trafgen, Examples

Usual work mode (all CPUs, send conf through C preprocessor):
trafgen --dev eth0 --conf tcp syn test --cpp

Injection of raw 802.11 frames (yes, also works with TX RING):
trafgen --dev wlan0 --rfraw --conf beacon test --cpus 2

Device smoke/fuzz testing with ICMP probes:
trafgen --dev eth0 --conf stack fuzzing \
--smoke-test 10.0.0.2

Machinea (trafgen, 10.0.0.1) ←→ Machineb (victim, 10.0.0.2)
Will print last packet, seed, iteration if machine gets unresponsive

Plus, you can combine trafgen with tc(8), e.g. netem

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 12 / 28



trafgen, Examples

Usual work mode (all CPUs, send conf through C preprocessor):
trafgen --dev eth0 --conf tcp syn test --cpp

Injection of raw 802.11 frames (yes, also works with TX RING):
trafgen --dev wlan0 --rfraw --conf beacon test --cpus 2

Device smoke/fuzz testing with ICMP probes:
trafgen --dev eth0 --conf stack fuzzing \
--smoke-test 10.0.0.2

Machinea (trafgen, 10.0.0.1) ←→ Machineb (victim, 10.0.0.2)
Will print last packet, seed, iteration if machine gets unresponsive

Plus, you can combine trafgen with tc(8), e.g. netem

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 12 / 28



trafgen, Examples

Usual work mode (all CPUs, send conf through C preprocessor):
trafgen --dev eth0 --conf tcp syn test --cpp

Injection of raw 802.11 frames (yes, also works with TX RING):
trafgen --dev wlan0 --rfraw --conf beacon test --cpus 2

Device smoke/fuzz testing with ICMP probes:
trafgen --dev eth0 --conf stack fuzzing \
--smoke-test 10.0.0.2

Machinea (trafgen, 10.0.0.1) ←→ Machineb (victim, 10.0.0.2)
Will print last packet, seed, iteration if machine gets unresponsive

Plus, you can combine trafgen with tc(8), e.g. netem

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 12 / 28



trafgen, Real-life Example
From Jesper Dangaard Brouer

Used trafgen to create a UDP fragmentation DoS attack
http://lists.openwall.net/netdev/2013/01/29/44

[net-next PATCH V2 0/6] net: frag performance tuning
cachelines for NUMA/SMP systems

With trafgen, remote machine’s kernel was stress-tested in order to
analyze IP fragmentation performance and its cacheline behaviour

trafgen config (slightly modified):
trafgen --dev eth51 --conf frag_packet03_small_frag --cpp -k 100 --cpus 2

#include <stddef.h>
cpu(0:1): {

# --- Ethernet Header ---
0x00, 0x1b, 0x21, 0x3c, 0x9d, 0xf8, # MAC destination
0x90, 0xe2, 0xba, 0x0a, 0x56, 0xb4, # MAC source
const16(ETH_P_IP), # Protocol

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 13 / 28

http://lists.openwall.net/netdev/2013/01/29/44


trafgen, Real-life Example
From Jesper Dangaard Brouer

Used trafgen to create a UDP fragmentation DoS attack
http://lists.openwall.net/netdev/2013/01/29/44

[net-next PATCH V2 0/6] net: frag performance tuning
cachelines for NUMA/SMP systems

With trafgen, remote machine’s kernel was stress-tested in order to
analyze IP fragmentation performance and its cacheline behaviour

trafgen config (slightly modified):
trafgen --dev eth51 --conf frag_packet03_small_frag --cpp -k 100 --cpus 2

#include <stddef.h>
cpu(0:1): {

# --- Ethernet Header ---
0x00, 0x1b, 0x21, 0x3c, 0x9d, 0xf8, # MAC destination
0x90, 0xe2, 0xba, 0x0a, 0x56, 0xb4, # MAC source
const16(ETH_P_IP), # Protocol

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 13 / 28

http://lists.openwall.net/netdev/2013/01/29/44


trafgen, Real-life Example
From Jesper Dangaard Brouer

Used trafgen to create a UDP fragmentation DoS attack
http://lists.openwall.net/netdev/2013/01/29/44

[net-next PATCH V2 0/6] net: frag performance tuning
cachelines for NUMA/SMP systems

With trafgen, remote machine’s kernel was stress-tested in order to
analyze IP fragmentation performance and its cacheline behaviour

trafgen config (slightly modified):
trafgen --dev eth51 --conf frag_packet03_small_frag --cpp -k 100 --cpus 2

#include <stddef.h>
cpu(0:1): {

# --- Ethernet Header ---
0x00, 0x1b, 0x21, 0x3c, 0x9d, 0xf8, # MAC destination
0x90, 0xe2, 0xba, 0x0a, 0x56, 0xb4, # MAC source
const16(ETH_P_IP), # Protocol

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 13 / 28

http://lists.openwall.net/netdev/2013/01/29/44


trafgen, Real-life Example
# --- IP Header ---
# IPv4 version(4-bit) + IHL(4-bit), TOS
0b01000101, 0x00,

# IPv4 Total Len
const16(57),

# ID, notice runtime dynamic random
drnd(2),

# IPv4 3-bit flags + 13-bit fragment offset
# 001 = More fragments
0b00100000, 0b00000000,

64, # TTL
IPPROTO_UDP,

# Dynamic IP checksum, notice offsets are zero indexed
IP_CSUM_DEFAULT, # Or csumip(14, 33)

192, 168, 51, 1, # Source IP
192, 168, 51, 2, # Dest IP

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 14 / 28



trafgen, Real-life Example

# --- UDP Header ---
# As this is a fragment the below stuff does not matter too much
const16(48054), # src port
const16(43514), # dst port
const16(20), # UDP length

# UDP checksum can be dyn calc via csumudp(offset IP, offset UDP)
# which is csumudp(14, 34), but for UDP its allowed to be zero
const16(0),

# Arbitrary payload
’A’, "\xca\xfe\xba\xbe", fill(0x41, 11), "Good morning!",

}

Also higher layer scripting possible to generate configs, e.g. for
generating packet distributions (IMIX, Tolly, Cisco, ...)

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 15 / 28



trafgen, Real-life Example

# --- UDP Header ---
# As this is a fragment the below stuff does not matter too much
const16(48054), # src port
const16(43514), # dst port
const16(20), # UDP length

# UDP checksum can be dyn calc via csumudp(offset IP, offset UDP)
# which is csumudp(14, 34), but for UDP its allowed to be zero
const16(0),

# Arbitrary payload
’A’, "\xca\xfe\xba\xbe", fill(0x41, 11), "Good morning!",

}

Also higher layer scripting possible to generate configs, e.g. for
generating packet distributions (IMIX, Tolly, Cisco, ...)

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 15 / 28



mausezahn

Higher-level, fast traffic generator3

Integrated into netsniff-ng, taken over development/maintenance

Has a Cisco-like CLI, but also a normal cmdline interface

Intended for HW/SW applicance in your lab, “plug-n-play” against
your test machines

mausezahn eth0 -A rand -B 1.1.1.1 -c 0 -t tcp
"dp=1-1023, flags=syn" -P "Good morning! This is a SYN
Flood Attack. We apologize for any inconvenience."

mausezahn eth0 -M 214 -t tcp "dp=80" -P "HTTP..." -B
myhost.com

3Still in experimental branch: git checkout origin/with-mausezahn
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 16 / 28



mausezahn

Higher-level, fast traffic generator3

Integrated into netsniff-ng, taken over development/maintenance

Has a Cisco-like CLI, but also a normal cmdline interface

Intended for HW/SW applicance in your lab, “plug-n-play” against
your test machines

mausezahn eth0 -A rand -B 1.1.1.1 -c 0 -t tcp
"dp=1-1023, flags=syn" -P "Good morning! This is a SYN
Flood Attack. We apologize for any inconvenience."

mausezahn eth0 -M 214 -t tcp "dp=80" -P "HTTP..." -B
myhost.com

3Still in experimental branch: git checkout origin/with-mausezahn
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 16 / 28



mausezahn

Higher-level, fast traffic generator3

Integrated into netsniff-ng, taken over development/maintenance

Has a Cisco-like CLI, but also a normal cmdline interface

Intended for HW/SW applicance in your lab, “plug-n-play” against
your test machines

mausezahn eth0 -A rand -B 1.1.1.1 -c 0 -t tcp
"dp=1-1023, flags=syn" -P "Good morning! This is a SYN
Flood Attack. We apologize for any inconvenience."

mausezahn eth0 -M 214 -t tcp "dp=80" -P "HTTP..." -B
myhost.com

3Still in experimental branch: git checkout origin/with-mausezahn
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 16 / 28



mausezahn

Higher-level, fast traffic generator3

Integrated into netsniff-ng, taken over development/maintenance

Has a Cisco-like CLI, but also a normal cmdline interface

Intended for HW/SW applicance in your lab, “plug-n-play” against
your test machines

mausezahn eth0 -A rand -B 1.1.1.1 -c 0 -t tcp
"dp=1-1023, flags=syn" -P "Good morning! This is a SYN
Flood Attack. We apologize for any inconvenience."

mausezahn eth0 -M 214 -t tcp "dp=80" -P "HTTP..." -B
myhost.com

3Still in experimental branch: git checkout origin/with-mausezahn
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 16 / 28



mausezahn

Higher-level, fast traffic generator3

Integrated into netsniff-ng, taken over development/maintenance

Has a Cisco-like CLI, but also a normal cmdline interface

Intended for HW/SW applicance in your lab, “plug-n-play” against
your test machines

mausezahn eth0 -A rand -B 1.1.1.1 -c 0 -t tcp
"dp=1-1023, flags=syn" -P "Good morning! This is a SYN
Flood Attack. We apologize for any inconvenience."

mausezahn eth0 -M 214 -t tcp "dp=80" -P "HTTP..." -B
myhost.com

3Still in experimental branch: git checkout origin/with-mausezahn
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 16 / 28



mausezahn

Higher-level, fast traffic generator3

Integrated into netsniff-ng, taken over development/maintenance

Has a Cisco-like CLI, but also a normal cmdline interface

Intended for HW/SW applicance in your lab, “plug-n-play” against
your test machines

mausezahn eth0 -A rand -B 1.1.1.1 -c 0 -t tcp
"dp=1-1023, flags=syn" -P "Good morning! This is a SYN
Flood Attack. We apologize for any inconvenience."

mausezahn eth0 -M 214 -t tcp "dp=80" -P "HTTP..." -B
myhost.com

3Still in experimental branch: git checkout origin/with-mausezahn
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 16 / 28



ifpps

Aka “how to measure things better” ...

Is a top-like network/system monitor that reads out kernel statistics
Measuring packet rates under a high packet load:

What some people do: iptraf (libpcap): 246,000 pps
What the system actually sees: ifpps: 1,378,000 pps

So better let the kernel do things right if it provides it anyway

ifpps eth0

ifpps -pd eth0

ifpps -lpcd wlan0 > gnuplot.dat

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 17 / 28



ifpps

Aka “how to measure things better” ...

Is a top-like network/system monitor that reads out kernel statistics
Measuring packet rates under a high packet load:

What some people do: iptraf (libpcap): 246,000 pps
What the system actually sees: ifpps: 1,378,000 pps

So better let the kernel do things right if it provides it anyway

ifpps eth0

ifpps -pd eth0

ifpps -lpcd wlan0 > gnuplot.dat

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 17 / 28



ifpps

Aka “how to measure things better” ...

Is a top-like network/system monitor that reads out kernel statistics
Measuring packet rates under a high packet load:

What some people do: iptraf (libpcap): 246,000 pps
What the system actually sees: ifpps: 1,378,000 pps

So better let the kernel do things right if it provides it anyway

ifpps eth0

ifpps -pd eth0

ifpps -lpcd wlan0 > gnuplot.dat

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 17 / 28



ifpps

Aka “how to measure things better” ...

Is a top-like network/system monitor that reads out kernel statistics
Measuring packet rates under a high packet load:

What some people do: iptraf (libpcap): 246,000 pps
What the system actually sees: ifpps: 1,378,000 pps

So better let the kernel do things right if it provides it anyway

ifpps eth0

ifpps -pd eth0

ifpps -lpcd wlan0 > gnuplot.dat

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 17 / 28



ifpps

Aka “how to measure things better” ...

Is a top-like network/system monitor that reads out kernel statistics
Measuring packet rates under a high packet load:

What some people do: iptraf (libpcap): 246,000 pps
What the system actually sees: ifpps: 1,378,000 pps

So better let the kernel do things right if it provides it anyway

ifpps eth0

ifpps -pd eth0

ifpps -lpcd wlan0 > gnuplot.dat

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 17 / 28



ifpps

Aka “how to measure things better” ...

Is a top-like network/system monitor that reads out kernel statistics
Measuring packet rates under a high packet load:

What some people do: iptraf (libpcap): 246,000 pps
What the system actually sees: ifpps: 1,378,000 pps

So better let the kernel do things right if it provides it anyway

ifpps eth0

ifpps -pd eth0

ifpps -lpcd wlan0 > gnuplot.dat

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 17 / 28



ifpps

Aka “how to measure things better” ...

Is a top-like network/system monitor that reads out kernel statistics
Measuring packet rates under a high packet load:

What some people do: iptraf (libpcap): 246,000 pps
What the system actually sees: ifpps: 1,378,000 pps

So better let the kernel do things right if it provides it anyway

ifpps eth0

ifpps -pd eth0

ifpps -lpcd wlan0 > gnuplot.dat

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 17 / 28



bpfc

Is a Berkely Packet Filter compiler

Supports internal Linux extensions
Filter opcodes can be passed to netsniff-ng:

bpfc foo > bar && netsniff-ng -f bar

Useful for:
Complex filters that cannot be expressed with the high-level syntax
Low-level kernel BPF machine/JIT debugging

BPF:
ldh [12] ; load eth type field
jneq #0x800, drop ; drop if not ipv4
ldb [23] ; load ip protocol
jneq #0x6, drop ; drop if not tcp
ret #-1 ; let it pass
drop: ret #0 ; discard

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 18 / 28



bpfc

Is a Berkely Packet Filter compiler

Supports internal Linux extensions
Filter opcodes can be passed to netsniff-ng:

bpfc foo > bar && netsniff-ng -f bar

Useful for:
Complex filters that cannot be expressed with the high-level syntax
Low-level kernel BPF machine/JIT debugging

BPF:
ldh [12] ; load eth type field
jneq #0x800, drop ; drop if not ipv4
ldb [23] ; load ip protocol
jneq #0x6, drop ; drop if not tcp
ret #-1 ; let it pass
drop: ret #0 ; discard

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 18 / 28



bpfc

Is a Berkely Packet Filter compiler

Supports internal Linux extensions
Filter opcodes can be passed to netsniff-ng:

bpfc foo > bar && netsniff-ng -f bar

Useful for:
Complex filters that cannot be expressed with the high-level syntax
Low-level kernel BPF machine/JIT debugging

BPF:
ldh [12] ; load eth type field
jneq #0x800, drop ; drop if not ipv4
ldb [23] ; load ip protocol
jneq #0x6, drop ; drop if not tcp
ret #-1 ; let it pass
drop: ret #0 ; discard

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 18 / 28



bpfc

Is a Berkely Packet Filter compiler

Supports internal Linux extensions
Filter opcodes can be passed to netsniff-ng:

bpfc foo > bar && netsniff-ng -f bar

Useful for:
Complex filters that cannot be expressed with the high-level syntax
Low-level kernel BPF machine/JIT debugging

BPF:
ldh [12] ; load eth type field
jneq #0x800, drop ; drop if not ipv4
ldb [23] ; load ip protocol
jneq #0x6, drop ; drop if not tcp
ret #-1 ; let it pass
drop: ret #0 ; discard

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 18 / 28



bpfc

Is a Berkely Packet Filter compiler

Supports internal Linux extensions
Filter opcodes can be passed to netsniff-ng:

bpfc foo > bar && netsniff-ng -f bar

Useful for:
Complex filters that cannot be expressed with the high-level syntax
Low-level kernel BPF machine/JIT debugging

BPF:
ldh [12] ; load eth type field
jneq #0x800, drop ; drop if not ipv4
ldb [23] ; load ip protocol
jneq #0x6, drop ; drop if not tcp
ret #-1 ; let it pass
drop: ret #0 ; discard

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 18 / 28



bpfc, Real-life Example
From Markus Kötter

Used bpfc to prove/exploit a Linux BPF x86 JIT compiler bug
http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit

net: bpf jit: fix an off-one bug in x86 64 cond jump target

With filter “(tcp and portrange 0-1024) or (udp and
portrange 1025-2048)”, he noticed weird JIT code emission:

BPF:
L8: jge #0x0, L26, L38
...
...
L26: jgt #0x400, L38, L37

BPF emitted x86 JIT code:
00000062 83F800 cmp eax,byte +0x0
00000065 0F83A2000000 jnc dword 0x10d
...
0000010C 3D00040000 cmp eax,0x400

Ooops, jnc dword 0x10d is off-by-one! (So we would jump into the
instruction instead of infront of the instruction!)

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 19 / 28

http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit


bpfc, Real-life Example
From Markus Kötter

Used bpfc to prove/exploit a Linux BPF x86 JIT compiler bug
http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit

net: bpf jit: fix an off-one bug in x86 64 cond jump target

With filter “(tcp and portrange 0-1024) or (udp and
portrange 1025-2048)”, he noticed weird JIT code emission:

BPF:
L8: jge #0x0, L26, L38
...
...
L26: jgt #0x400, L38, L37

BPF emitted x86 JIT code:
00000062 83F800 cmp eax,byte +0x0
00000065 0F83A2000000 jnc dword 0x10d
...
0000010C 3D00040000 cmp eax,0x400

Ooops, jnc dword 0x10d is off-by-one! (So we would jump into the
instruction instead of infront of the instruction!)

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 19 / 28

http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit


bpfc, Real-life Example
From Markus Kötter

Used bpfc to prove/exploit a Linux BPF x86 JIT compiler bug
http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit

net: bpf jit: fix an off-one bug in x86 64 cond jump target

With filter “(tcp and portrange 0-1024) or (udp and
portrange 1025-2048)”, he noticed weird JIT code emission:

BPF:
L8: jge #0x0, L26, L38
...
...
L26: jgt #0x400, L38, L37

BPF emitted x86 JIT code:
00000062 83F800 cmp eax,byte +0x0
00000065 0F83A2000000 jnc dword 0x10d
...
0000010C 3D00040000 cmp eax,0x400

Ooops, jnc dword 0x10d is off-by-one! (So we would jump into the
instruction instead of infront of the instruction!)

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 19 / 28

http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit


bpfc, Real-life Example
From Markus Kötter

Used bpfc to prove/exploit a Linux BPF x86 JIT compiler bug
http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit

net: bpf jit: fix an off-one bug in x86 64 cond jump target

With filter “(tcp and portrange 0-1024) or (udp and
portrange 1025-2048)”, he noticed weird JIT code emission:

BPF:
L8: jge #0x0, L26, L38
...
...
L26: jgt #0x400, L38, L37

BPF emitted x86 JIT code:
00000062 83F800 cmp eax,byte +0x0
00000065 0F83A2000000 jnc dword 0x10d
...
0000010C 3D00040000 cmp eax,0x400

Ooops, jnc dword 0x10d is off-by-one! (So we would jump into the
instruction instead of infront of the instruction!)

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 19 / 28

http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit


bpfc, Real-life Example

But wait, it’s getting better! :-)

In x86 BPF JIT implementation, skb->data pointer in register r8

Idea: increase r8 by 42 (for a UDP packet → payload), and call r8

00000000 4983C02A add r8,byte +0x2a
00000004 41FFD0 call r8

We need to trigger this off-by-one bug multiple times to encode this!

bpfc was used to forge such a malicious BPF filter ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 20 / 28



bpfc, Real-life Example

But wait, it’s getting better! :-)

In x86 BPF JIT implementation, skb->data pointer in register r8

Idea: increase r8 by 42 (for a UDP packet → payload), and call r8

00000000 4983C02A add r8,byte +0x2a
00000004 41FFD0 call r8

We need to trigger this off-by-one bug multiple times to encode this!

bpfc was used to forge such a malicious BPF filter ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 20 / 28



bpfc, Real-life Example

But wait, it’s getting better! :-)

In x86 BPF JIT implementation, skb->data pointer in register r8

Idea: increase r8 by 42 (for a UDP packet → payload), and call r8

00000000 4983C02A add r8,byte +0x2a
00000004 41FFD0 call r8

We need to trigger this off-by-one bug multiple times to encode this!

bpfc was used to forge such a malicious BPF filter ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 20 / 28



bpfc, Real-life Example

But wait, it’s getting better! :-)

In x86 BPF JIT implementation, skb->data pointer in register r8

Idea: increase r8 by 42 (for a UDP packet → payload), and call r8

00000000 4983C02A add r8,byte +0x2a
00000004 41FFD0 call r8

We need to trigger this off-by-one bug multiple times to encode this!

bpfc was used to forge such a malicious BPF filter ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 20 / 28



bpfc, Real-life Example

But wait, it’s getting better! :-)

In x86 BPF JIT implementation, skb->data pointer in register r8

Idea: increase r8 by 42 (for a UDP packet → payload), and call r8

00000000 4983C02A add r8,byte +0x2a
00000004 41FFD0 call r8

We need to trigger this off-by-one bug multiple times to encode this!

bpfc was used to forge such a malicious BPF filter ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 20 / 28



bpfc, Real-life Example

But wait, it’s getting better! :-)

In x86 BPF JIT implementation, skb->data pointer in register r8

Idea: increase r8 by 42 (for a UDP packet → payload), and call r8

00000000 4983C02A add r8,byte +0x2a
00000004 41FFD0 call r8

We need to trigger this off-by-one bug multiple times to encode this!

bpfc was used to forge such a malicious BPF filter ...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 20 / 28



bpfc, Real-life Example
1:

ldh [0]
jge #0x0, l_movt, l_movf

/* waste some space to enforce a
jnc dword */

ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]

...

2:
...
l_movt:
/* 4D89C2 mov r10,r8 */

jeq #0x90C2894D, l_pmov0, l_pmov1
ldh [0]

l_movf:
/* 4D89C2 mov r10,r8 */

jeq #0x90C2894D, l_pmov0, l_pmov1
ldh [0]

l_pmov0:
jge #0x0, l_addt, l_addf

l_pmov1:
jge #0x0, l_addt, l_addf

/* waste some space to enforce a
jnc dword */

ldh [0]
...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 21 / 28



bpfc, Real-life Example
3:
...

ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]

l_addt:
/* 4983C22A add r10,byte +0x2a */

jeq #0x2AC28349, l_padd0, l_padd1

...

4:
l_addf:
/* 4983C22A add r10,byte +0x2a */

jeq #0x2AC28349, l_padd0, l_padd1
ldh [0]

l_padd0:
jge #0x0, l_callt, l_callf

l_padd1:
jge #0x0, l_callt, l_callf

/* waste some space to enforce a
jnc dword */

ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]

...

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 22 / 28



bpfc, Real-life Example
5:
...

ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]

l_callt:
/* 41FFD2 call r10 */

jeq #0x90D2FF41, l_ret0, l_ret1

l_callf:
/* 41FFD2 call r10 */

jeq #0x90D2FF41, l_ret0, l_ret1
ldh [0]

l_ret0:
ret a

l_ret1:
ret a

Next steps:
bfpc foo > bar

netsniff-ng -f bar

Send a random UDP packet e.g.
with trafgen with “\xcc”
shellcode to be executed (int3)

Executed:
=> 0x7ffff7fd517b: je 0x7ffff7fd5192
=> 0x7ffff7fd517d: jmp 0x7ffff7fd51a0
=> 0x7ffff7fd51a0: cmp eax,0x0
=> 0x7ffff7fd51a3: jae 0x7ffff7fd5231
=> 0x7ffff7fd5231: call r10
=> 0x618c6a: int3

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 23 / 28



bpfc, Real-life Example
5:
...

ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]

l_callt:
/* 41FFD2 call r10 */

jeq #0x90D2FF41, l_ret0, l_ret1

l_callf:
/* 41FFD2 call r10 */

jeq #0x90D2FF41, l_ret0, l_ret1
ldh [0]

l_ret0:
ret a

l_ret1:
ret a

Next steps:
bfpc foo > bar

netsniff-ng -f bar

Send a random UDP packet e.g.
with trafgen with “\xcc”
shellcode to be executed (int3)

Executed:
=> 0x7ffff7fd517b: je 0x7ffff7fd5192
=> 0x7ffff7fd517d: jmp 0x7ffff7fd51a0
=> 0x7ffff7fd51a0: cmp eax,0x0
=> 0x7ffff7fd51a3: jae 0x7ffff7fd5231
=> 0x7ffff7fd5231: call r10
=> 0x618c6a: int3

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 23 / 28



bpfc, Real-life Example
5:
...

ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]
ldh [0]

l_callt:
/* 41FFD2 call r10 */

jeq #0x90D2FF41, l_ret0, l_ret1

l_callf:
/* 41FFD2 call r10 */

jeq #0x90D2FF41, l_ret0, l_ret1
ldh [0]

l_ret0:
ret a

l_ret1:
ret a

Next steps:
bfpc foo > bar

netsniff-ng -f bar

Send a random UDP packet e.g.
with trafgen with “\xcc”
shellcode to be executed (int3)

Executed:
=> 0x7ffff7fd517b: je 0x7ffff7fd5192
=> 0x7ffff7fd517d: jmp 0x7ffff7fd51a0
=> 0x7ffff7fd51a0: cmp eax,0x0
=> 0x7ffff7fd51a3: jae 0x7ffff7fd5231
=> 0x7ffff7fd5231: call r10
=> 0x618c6a: int3

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 23 / 28



bpfc, Real-life Example

Ooops!

But, 1: Pretty unrealistic filter for real-world!

But, 2: BPF JIT code needs more security reviews!
Bugs are not so obvious and mostly fatal here! ;-)

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 24 / 28



netsniff-ng

Fast network analyzer, pcap recorder, pcap replayer

Uses PF PACKET sockets with mmap(2)’ed RX RING and TX RING

Pcap recording backend for Security Onion4, Xplico, NST and others

Very powerful, supports different pcap types (see netsniff-ng -D)
and I/O methods, i.e. scatter-gather and mmap(2)

Supports analysis, capture, transmission of raw 802.11 frames as well

Protocol dissectors: 802.3 (Ethernet), 802.11* (WLAN), ARP,
MPLS, 802.1Q (VLAN), 802.1QinQ, LLDP, IPv4, IPv6, ICMPv4,
ICMPv6, IGMP, TCP, UDP, incl. GeoIP

4http://code.google.com/p/security-onion/
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 25 / 28

http://code.google.com/p/security-onion/


netsniff-ng

Fast network analyzer, pcap recorder, pcap replayer

Uses PF PACKET sockets with mmap(2)’ed RX RING and TX RING

Pcap recording backend for Security Onion4, Xplico, NST and others

Very powerful, supports different pcap types (see netsniff-ng -D)
and I/O methods, i.e. scatter-gather and mmap(2)

Supports analysis, capture, transmission of raw 802.11 frames as well

Protocol dissectors: 802.3 (Ethernet), 802.11* (WLAN), ARP,
MPLS, 802.1Q (VLAN), 802.1QinQ, LLDP, IPv4, IPv6, ICMPv4,
ICMPv6, IGMP, TCP, UDP, incl. GeoIP

4http://code.google.com/p/security-onion/
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 25 / 28

http://code.google.com/p/security-onion/


netsniff-ng

Fast network analyzer, pcap recorder, pcap replayer

Uses PF PACKET sockets with mmap(2)’ed RX RING and TX RING

Pcap recording backend for Security Onion4, Xplico, NST and others

Very powerful, supports different pcap types (see netsniff-ng -D)
and I/O methods, i.e. scatter-gather and mmap(2)

Supports analysis, capture, transmission of raw 802.11 frames as well

Protocol dissectors: 802.3 (Ethernet), 802.11* (WLAN), ARP,
MPLS, 802.1Q (VLAN), 802.1QinQ, LLDP, IPv4, IPv6, ICMPv4,
ICMPv6, IGMP, TCP, UDP, incl. GeoIP

4http://code.google.com/p/security-onion/
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 25 / 28

http://code.google.com/p/security-onion/


netsniff-ng

Fast network analyzer, pcap recorder, pcap replayer

Uses PF PACKET sockets with mmap(2)’ed RX RING and TX RING

Pcap recording backend for Security Onion4, Xplico, NST and others

Very powerful, supports different pcap types (see netsniff-ng -D)
and I/O methods, i.e. scatter-gather and mmap(2)

Supports analysis, capture, transmission of raw 802.11 frames as well

Protocol dissectors: 802.3 (Ethernet), 802.11* (WLAN), ARP,
MPLS, 802.1Q (VLAN), 802.1QinQ, LLDP, IPv4, IPv6, ICMPv4,
ICMPv6, IGMP, TCP, UDP, incl. GeoIP

4http://code.google.com/p/security-onion/
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 25 / 28

http://code.google.com/p/security-onion/


netsniff-ng

Fast network analyzer, pcap recorder, pcap replayer

Uses PF PACKET sockets with mmap(2)’ed RX RING and TX RING

Pcap recording backend for Security Onion4, Xplico, NST and others

Very powerful, supports different pcap types (see netsniff-ng -D)
and I/O methods, i.e. scatter-gather and mmap(2)

Supports analysis, capture, transmission of raw 802.11 frames as well

Protocol dissectors: 802.3 (Ethernet), 802.11* (WLAN), ARP,
MPLS, 802.1Q (VLAN), 802.1QinQ, LLDP, IPv4, IPv6, ICMPv4,
ICMPv6, IGMP, TCP, UDP, incl. GeoIP

4http://code.google.com/p/security-onion/
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 25 / 28

http://code.google.com/p/security-onion/


netsniff-ng

Fast network analyzer, pcap recorder, pcap replayer

Uses PF PACKET sockets with mmap(2)’ed RX RING and TX RING

Pcap recording backend for Security Onion4, Xplico, NST and others

Very powerful, supports different pcap types (see netsniff-ng -D)
and I/O methods, i.e. scatter-gather and mmap(2)

Supports analysis, capture, transmission of raw 802.11 frames as well

Protocol dissectors: 802.3 (Ethernet), 802.11* (WLAN), ARP,
MPLS, 802.1Q (VLAN), 802.1QinQ, LLDP, IPv4, IPv6, ICMPv4,
ICMPv6, IGMP, TCP, UDP, incl. GeoIP

4http://code.google.com/p/security-onion/
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 25 / 28

http://code.google.com/p/security-onion/


netsniff-ng, Examples

Usual work mode, with high-level, tcpdump-like filter:
netsniff-ng --in eth0 tcp or udp

Capture pcap files of Alexey Kuznetzov’s format, with low-level filter:
netsniff-ng --in eth0 --out dump.pcap -b 0 -s -T
0xa1b2cd34 -f bpfops

Capture multiple raw 802.11 traffic pcap files, each 1GiB, mmap(2)ed:
netsniff-ng --in wlan0 --rfraw --out /probe/ -s -m
--interval 1GiB -b 0

Replay a pcap file in scatter-gather, also tc(8) can be used again:
netsniff-ng --in dump.pcap -k 100 --out eth0 -s -G -b 0

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 26 / 28



netsniff-ng, Examples

Usual work mode, with high-level, tcpdump-like filter:
netsniff-ng --in eth0 tcp or udp

Capture pcap files of Alexey Kuznetzov’s format, with low-level filter:
netsniff-ng --in eth0 --out dump.pcap -b 0 -s -T
0xa1b2cd34 -f bpfops

Capture multiple raw 802.11 traffic pcap files, each 1GiB, mmap(2)ed:
netsniff-ng --in wlan0 --rfraw --out /probe/ -s -m
--interval 1GiB -b 0

Replay a pcap file in scatter-gather, also tc(8) can be used again:
netsniff-ng --in dump.pcap -k 100 --out eth0 -s -G -b 0

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 26 / 28



netsniff-ng, Examples

Usual work mode, with high-level, tcpdump-like filter:
netsniff-ng --in eth0 tcp or udp

Capture pcap files of Alexey Kuznetzov’s format, with low-level filter:
netsniff-ng --in eth0 --out dump.pcap -b 0 -s -T
0xa1b2cd34 -f bpfops

Capture multiple raw 802.11 traffic pcap files, each 1GiB, mmap(2)ed:
netsniff-ng --in wlan0 --rfraw --out /probe/ -s -m
--interval 1GiB -b 0

Replay a pcap file in scatter-gather, also tc(8) can be used again:
netsniff-ng --in dump.pcap -k 100 --out eth0 -s -G -b 0

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 26 / 28



netsniff-ng, Examples

Usual work mode, with high-level, tcpdump-like filter:
netsniff-ng --in eth0 tcp or udp

Capture pcap files of Alexey Kuznetzov’s format, with low-level filter:
netsniff-ng --in eth0 --out dump.pcap -b 0 -s -T
0xa1b2cd34 -f bpfops

Capture multiple raw 802.11 traffic pcap files, each 1GiB, mmap(2)ed:
netsniff-ng --in wlan0 --rfraw --out /probe/ -s -m
--interval 1GiB -b 0

Replay a pcap file in scatter-gather, also tc(8) can be used again:
netsniff-ng --in dump.pcap -k 100 --out eth0 -s -G -b 0

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 26 / 28



What’s next in Netsniff-NG?
astraceroute:

DNS traceroute to detect malicious DNS injections on transit traffic
(reported by anonymous researchers at SIGCOMM 2012 paper)

mausezahn:
Improve its imported code and integrate it into the main repository

netsniff-ng, mausezahn:
New protocol dissectors/generators like SCTP, DCCP, BGP, etc

netsniff-ng:
Compressed on-the-fly bitmap indexing for large PCAP files
Try to find a sane way to utilize multicore with packet fanout

netsniff-ng, trafgen, mausezahn:
Optimize capturing/transmission performance (AF PACKET plumbing)
Performance benchmark on 10Gbit/s

Toolkit integration into RHEL!
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 27 / 28



What’s next in Netsniff-NG?
astraceroute:

DNS traceroute to detect malicious DNS injections on transit traffic
(reported by anonymous researchers at SIGCOMM 2012 paper)

mausezahn:
Improve its imported code and integrate it into the main repository

netsniff-ng, mausezahn:
New protocol dissectors/generators like SCTP, DCCP, BGP, etc

netsniff-ng:
Compressed on-the-fly bitmap indexing for large PCAP files
Try to find a sane way to utilize multicore with packet fanout

netsniff-ng, trafgen, mausezahn:
Optimize capturing/transmission performance (AF PACKET plumbing)
Performance benchmark on 10Gbit/s

Toolkit integration into RHEL!
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 27 / 28



What’s next in Netsniff-NG?
astraceroute:

DNS traceroute to detect malicious DNS injections on transit traffic
(reported by anonymous researchers at SIGCOMM 2012 paper)

mausezahn:
Improve its imported code and integrate it into the main repository

netsniff-ng, mausezahn:
New protocol dissectors/generators like SCTP, DCCP, BGP, etc

netsniff-ng:
Compressed on-the-fly bitmap indexing for large PCAP files
Try to find a sane way to utilize multicore with packet fanout

netsniff-ng, trafgen, mausezahn:
Optimize capturing/transmission performance (AF PACKET plumbing)
Performance benchmark on 10Gbit/s

Toolkit integration into RHEL!
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 27 / 28



What’s next in Netsniff-NG?
astraceroute:

DNS traceroute to detect malicious DNS injections on transit traffic
(reported by anonymous researchers at SIGCOMM 2012 paper)

mausezahn:
Improve its imported code and integrate it into the main repository

netsniff-ng, mausezahn:
New protocol dissectors/generators like SCTP, DCCP, BGP, etc

netsniff-ng:
Compressed on-the-fly bitmap indexing for large PCAP files
Try to find a sane way to utilize multicore with packet fanout

netsniff-ng, trafgen, mausezahn:
Optimize capturing/transmission performance (AF PACKET plumbing)
Performance benchmark on 10Gbit/s

Toolkit integration into RHEL!
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 27 / 28



What’s next in Netsniff-NG?
astraceroute:

DNS traceroute to detect malicious DNS injections on transit traffic
(reported by anonymous researchers at SIGCOMM 2012 paper)

mausezahn:
Improve its imported code and integrate it into the main repository

netsniff-ng, mausezahn:
New protocol dissectors/generators like SCTP, DCCP, BGP, etc

netsniff-ng:
Compressed on-the-fly bitmap indexing for large PCAP files
Try to find a sane way to utilize multicore with packet fanout

netsniff-ng, trafgen, mausezahn:
Optimize capturing/transmission performance (AF PACKET plumbing)
Performance benchmark on 10Gbit/s

Toolkit integration into RHEL!
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 27 / 28



What’s next in Netsniff-NG?
astraceroute:

DNS traceroute to detect malicious DNS injections on transit traffic
(reported by anonymous researchers at SIGCOMM 2012 paper)

mausezahn:
Improve its imported code and integrate it into the main repository

netsniff-ng, mausezahn:
New protocol dissectors/generators like SCTP, DCCP, BGP, etc

netsniff-ng:
Compressed on-the-fly bitmap indexing for large PCAP files
Try to find a sane way to utilize multicore with packet fanout

netsniff-ng, trafgen, mausezahn:
Optimize capturing/transmission performance (AF PACKET plumbing)
Performance benchmark on 10Gbit/s

Toolkit integration into RHEL!
D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 27 / 28



Thanks! Questions?

Web: http://netsniff-ng.org

Fellow hackers, clone and submit patches:

git clone git://github.com/borkmann/netsniff-ng.git

Really, don’t be shy!

Sources:
http://lists.openwall.net/netdev/2013/01/29/44
http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit

D. Borkmann (Red Hat) packet mmap(2), bpf, netsniff-ng February 20, 2013 28 / 28

http://netsniff-ng.org
git://github.com/borkmann/netsniff-ng.git
http://lists.openwall.net/netdev/2013/01/29/44
http://carnivore.it/2011/12/27/linux_3.0_bpf_jit_x86_64_exploit

