On getting tc classifier fully programmable with cls_bpf.

Daniel Borkmann
<daniel@iogearbox.net>
Noiro Networks / Cisco

netdev 1.1, Sevilla, February 12, 2016

Daniel Borkmann tc and cls_bpf with eBPF

February 11, 2016

1/23

Background, history

m BPF origins as a generic, fast and 'safe’ solution to packet parsing

m tcpdump — libpcap — compiler — bytecode — kernel interpreter

m Intended as early drop point in AF_PACKET kernel receive path

m JIT able for x86_64 since 2011, ppc, sparc, arm, arm64, s390, mips

m BPF used today: networking, tracing, sandboxing

tcpdump -i any -d ip

(000) 1dh
(001) jeq
(002) ret
(003) ret

Daniel Borkmann

[14]

#0x800 jt 2 jf 3
#65535

#0

tc and cls_bpf with eBPF February 11, 2016

2/23

Classic BPF (cBPF) in a nutshell.

m 32 bit, available register: A, X, M[0-15], (pc)

m A used for almost everything, X temporary register, M[] stack

m Insn: 64 bit (u16:code, u8:jt, u8:jf, u32:k)

m Insn classes: Id, Idx, st, stx, alu, jmp, ret, misc

m Forward jumps, max 4096 instructions, statically verified in kernel
m Linux-specific extensions overload 1db/1dh/1dw with k< off+x
m bpf_asm: 33 instructions, 11 addressing modes, 16 extensions

m Input data/"context” (ctx), e.g. skb, seccomp_data

m Semantics of exit code defined by application

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 3/23

Extended BPF (eBPF) as next step.

m 64 bit, 32 bit sub-registers, available register: RO-R10, stack, (pc)

m Insn: 64 bit (u8:code, u8:dst_reg, u8:src_reg, s16:0ff, s32:imm)
m New insns: dw Id/st, mov, alu64 + signed shift, endian, calls, xadd

m Forward & backward* jumps, max 4096 instructions

m Generic helper function concept, several kernel-provided helpers

m Maps with arbitrary sharing (user space apps, between eBPF progs)

m Tail call concept for eBPF programs, eBPF object pinning
m LLVM eBPF backend: clang -02 -target bpf -o foo.o foo.c
m C — LLVM — ELF — tc — kernel (verification/JIT) — cls_bpf (exec)

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 4/23

eBPF, General remarks.

m Stable ABI for user space, like the case with cBPF

m Management via bpf (2) syscall through file descriptors

m Points to kernel resource — eBPF map / program

m No cBPF interpreter in kernel anymore, all eBPF!

Kernel performs internal cBPF to eBPF migration for cBPF users

m JITs for eBPF: x86_64, s390, arm64 (remaining ones are still cBPF)

Various stages for in-kernel cBPF loader

Security (verifier, non-root restrictions, JIT hardening)

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 5/23

eBPF and cls_bpf.

cls_bpf as cBPF-based classifier in 2013, eBPF support since 2015
Minimal fast-path, just calls into BPF_PROG_RUN ()

m Instance holds one or more BPF programs, 2 operation modes:

m Calls into full tc action engine tcf_exts_exec() for e.g. act_bpf
m Direct-action (DA) fast-path for immediate return after BPF run

m In DA, eBPF prog sets skb->tc_classid, returns action code

m Possible codes: ok, shot, stolen, redirect, unspec

m tc frontend does all the setup work, just sends fd via netlink

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 6 /23

eBPF and cls_bpf.

m skb metadata:
m Read/write: mark, priority, tc_index, cb[5], tc_classid
m Read: len, pkt_type, queue_mapping, protocol, vlan_*, ifindex, hash
m Tunnel metadata:
m Read/write: tunnel key for IPv4/IPv6 (dst-meta by vxlan, geneve, gre)

m Helpers:

eBPF map access (lookup/update/delete)
Tail call support

Store/load payload (multi-)bytes

L3/L4 csum fixups

skb redirection (ingress/egress)

Vlan push/pop and tunnel key
trace_printk debugging

net_cls cgroup classid

Routing realms (dst->tclassid)

Get random number/cpu/ktime

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 7/23

cls_bpf, Invocation points.

ingress qdisc

clsact qdisc

| netif_receive_skb_core()

sch_handle_ingress()

A

RX path

Daniel Borkmann

__dev_queue_xmit()

sch_handle_egress()

|| Qdisc ‘

fq_codel, sfq, drr, ...

Y TX path

tc and cls_bpf with eBPF

February 11, 2016

8/23

cls_bpf, Example setup in 1 slide.

$ clang -02 -target bpf -o foo.o foo.c

tc qdisc add dev eml clsact

tc qdisc show dev eml

[...]

qdisc clsact ffff: parent ffff:fffl

tc filter add dev eml ingress bpf da obj foo.o sec pil
tc filter add dev eml egress bpf da obj foo.o sec p2

tc filter show dev eml ingress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle Oxl foo.o:[pl] direct-action

tc filter show dev eml egress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle Ox1 foo.o:[p2] direct-action

tc filter del dev eml ingress pref 49152
tc filter del dev eml egress pref 49152
Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 9/23

tc frontend.

m Common loader backend for f_bpf, m_bpf, e_bpf
m Walks ELF file to generate program fd, or fetches fd from pinned
m Setup via ELF object file in multiple steps:

m Mounts bpf fs, fetches all ancillary sections

m Sets up maps (fd from pinned or new with pinning)
m Relocations for injecting map fds into program

m Loading of actual eBPF program code into kernel

m Setup and injection of tail called sections

Grafting of existing prog arrays

Dumping trace pipe

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 10 /23

tc eBPF examples, minimal module.

$ cat >foo.c <<EOF

E

©*

#include "bpf_api.h"

__section_cls_entry
int cls_entry(struct
{
/* char fmt[]
skb->priority

__sk_buff *skb)

"hello prio%u world!\n"; */
get_cgroup_classid(skb);

/* trace_printk(fmt, sizeof(fmt), skb->priority); */
return TC_ACT_OK;

}

BPF_LICENSE("GPL");
OF

clang -02 -target bpf -o foo.o foo.c
tc filter add dev eml egress bpf da obj foo.o

tc exec bpf dbg

cgcreate -g net_cls:/foo
echo 6 > foo/net_cls.classid

cgexec -g net_cls:foo ./bar # -> app ./bar xmits with priority of 6

Daniel Borkmann

-> dumps trace_printk()

tc and cls_bpf with eBPF

February 11, 2016

11/ 23

tc eBPF examples, map sharing.
#include "bpf_api.h"

BPF_ARRAY4 (map_sh, 0, PIN_OBJECT_NS, 1);
BPF_LICENSE("GPL");

__section("egress") int egr_main(struct __sk_buff *skb)

{
int key = 0, *val;
val = map_lookup_elem(&map_sh, &key);
if (val)
lock_xadd(val, 1);
return BPF_H_DEFAULT;
}
__section("ingress") int ing main(struct __sk_buff *skb)
{
char fmt[] = "map val: %d\n";
int key = 0, *val;
val = map_lookup_elem(&map_sh, &key);
if (val)
trace_printk(fmt, sizeof(fmt), *val);
return BPF_H_DEFAULT;
}

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 12 /23

tc eBPF examples, tail calls.
#include "bpf_api.h"

BPF_PROG_ARRAY (jmp_tc, JMP_MAP, PIN_GLOBAL_NS, 1);
BPF_LICENSE("GPL");

__section_tail(JMP_MAP, 0) int cls_foo(struct __sk_buff *skb)

{
char fmt[] = "in cls_foo\n";
trace_printk(fmt, sizeof(fmt));
return TC_H_MAKE(1, 42);

}

__section_cls_entry int cls_entry(struct __sk_buff *skb)

{
char fmt[] = "fallthrough\n";
tail_call(skb, &jmp_tc, 0);
trace_printk(fmt, sizeof(fmt));
return BPF_H_DEFAULT;

}

$ clang -02 -DJMP_MAP=0 -target bpf -o graft.o graft.c
tc filter add dev eml ingress bpf obj graft.o

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 13 /23

Code and further information.

m Take-aways:
m Writing eBPF programs for tc is really easy
m Stable ABI, fully programmable for specific use-cases
m Native performance when JITed!

m Code:

m Everything upstream in kernel, iproute2 and llvm!
m Available from usual places, e.g. https://git.kernel.org/

m Some further information:

m Examples in iproute2’'s examples/bpf/
m Documentation/networking/filter.txt
m Man pages bpf (2), tc-bpf (8)

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 14 /23

https://git.kernel.org/

Appendix / Backup.

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 15 /23

eBPF, Helper functions.

m Signature: u64 foo(u64 r1, u64 r2, ub4d r3, ubsd r4, ubd r5)
m Calling convention:

m RO — return value

m R1-R5 — function arguments

m R6-R9 — callee saved

m R10 — read-only frame pointer

m Specification for verifier, example:

static const struct bpf_func_proto foo_proto = {

.func
.gpl_only
.ret_type
.argl_type
.arg2_type
.arg3_type
.argd_type
}

Daniel Borkmann

= foo,

= false,

= RET_INTEGER,

= ARG_CONST_MAP_PTR,

= ARG_PTR_TO_MAP_KEY,

= ARG_PTR_TO_MAP_VALUE,
= ARG_ANYTHING,

tc and cls_bpf with eBPF February 11, 2016

16 / 23

eBPF, Helper functions.

m eBPF program
m Populates R1 - R5 depending on specification
m BPF_RAW_INSN(BPF_JMP | BPF_CALL, O, O, O, BPF_FUNC_foo)
m Reads out RO if needed
m Can only use core kernel provided BPF_FUNC_* helpers

m Kernel space
m eBPF verification step
m Mapping of BPF_FUNC_* (insn->imm) to struct bpf_func_proto
m Call fixup: insn->imm = fn->func - __bpf_call base;
m Invocation: RO = (__bpf_call base + insn->imm) (R1, ..., R5);
|

JITing rather straight forward, x86_.64 — 1:1 mapping to HW registers

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 17 /23

eBPF, Maps.

m Lightweight key/value store for keeping state
m Generic, efficient data structures
m Array, hash table, (per CPU variants soon)
m Application-specific data structures

m Program array, perf event array
m Map creation only from user space — bpf (2)

m Map access for lookup, update, delete:

m User space application — bpf (2) with fd
m eBPF program — helper functions

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 18 /23

eBPF, Maps.

m eBPF loader/program

m Map mostly used in R1 as type ARG_CONST_MAP_PTR

m Loader fetches map fd via bpf (2)

m Rewrites instruction BPF_LD_MAP_FD(BPF_REG_1, fd)

m Expands to double bpf_insn BPF_LD | BPF_IMM | BPF_DW

m First part holds .src_reg = BPF_PSEUDO_MAP_FD, .imm = fd
m Kernel space

m eBPF verification step

m Recognizes BPF_PSEUDO_MAP_FD keyword

m Fetches real map from process fd table

m Stores actual map pointer in BPF_LD | BPF_IMM | BPF_DW

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 19 /23

eBPF, Tail calls.

m ldea: allow eBPF programs to call other eBPF programs

m No return to old program, same stack frame used (think of long jump)
m Consists of 2 components:

m Program array map, populated by user space with eBPF fds
m eBPF helper: bpf_tail_call(ctx, &jmp_table, index)

m Kernel caches actual pointers to map, updates xchg() 'ed
m Kernel translates BPF_FUNC_tail _call into instructions
m Fall-through when lookup failed, otherwise insn = prog->insnsi

m Powerful concept for live eBPF program updates, dispatching protocol
parsers, etc

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 20 /23

eBPF, Object pinning.

Everything being tied to fds — thus, tied to program livetime

m Makes f.e. eBPF map sharing cumbersome
Option 1: UDS

m File descriptor passing, works in general with eBPF fds

m Requires deploying extra daemon for each application

Option 2: small special purpose fs (utilized by tc)

m Maps/programs can be pinned via bpf (2) as fs node
m Picked up via bpf (2) again, point to same map/program
m No difference to "normal” created bpf (2) fds

m fs per mountns, supports bind-mounts, hard links, etc

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016

21 /23

eBPF, Security.

m Aim for BPF is to be "safe” as in "cannot crash the kernel” ;)

Primary job of the verifier, eBPF one more complex
m Checks for cyclic prog flow, uninitialized mem, dead code, types, etc
m CONFIG_DEBUG_SET_MODULE_RONX on x86_64, arm, arm64, s390

m Locks down an entire eBPF program as RO for its lifetime

m When JITed, locks module memory as RO and randomizes start address
m Near future: constant blinding to mitigate JIT spraying

m JIT switch: sysctl net.core.bpf_jit_enable

m eBPF restricted for unprivileged programs (socket filters)

m Very few helpers allowed (map access, tail calls, and few others)
m Restrictions on pointers (no arithmetic, passing to helpers, etc)

m Once switch: sysctl kernel.unprivileged bpf _disabled

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 22/23

eBPF, LLVM.

And most importantly: clang -02 -target bpf -o foo.o foo.c

eBPF progs written in "restricted C”, other frontends possible (P4)
Compiled to eBPF insns by LLVM (since 3.7), outputs ELF file
m clang -02 -target bpf -c foo.c -S -o -

m readelf -a foo.o, readelf -x ... foo.o0
m ELF file — container for map specs, program code, license, etc

m Holds everything for "loaders” like tc to get it into kernel

Typical workflow, example:

m C — LLVM — ELF — tc — kernel (verification/JIT) — cls_bpf (exec)

Daniel Borkmann tc and cls_bpf with eBPF February 11, 2016 23 /23

