
eBPF and XDP walkthrough and recent updates

Daniel Borkmann
<daniel@iogearbox.net>

cilium project

fosdem17, February 4, 2017

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 1 / 11

Big Picture: eBPF and Networking

eBPF: efficient, generic in-kernel bytecode engine
Today used mainly in networking, tracing, sandboxing

XDP, tc, socket reuseport/demux/filter, perf, bcc, seccomp, ...

cls bpf programmable packet processor in tc subsystem
Attachable to ingress, egress of kernel’s networking data path

XDP programmable, high-performance, in-kernel packet processor
Attachable to ingress directly at driver’s early receive path

cls bpf complementary to XDP
Attachable on ingress and egress to all net devices
skb as input context to leverage stack functionality

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 2 / 11

eBPF Architecture
11 64bit registers, 32bit subregisters, stack, pc
Instructions 64bit wide, max 4096 instructions/program
Various new instructions over cBPF
Core components of architecture

Read/write access to context
Helper function concept
Maps, arbitrary sharing
Tail calls
Object pinning
cBPF to eBPF translator
LLVM eBPF backend

eBPF JIT backends implemented by archs
Management via bpf(2), stable ABI

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 3 / 11

tc’s cls bpf and sch clsact

sch clsact container for tc classifier and actions
Provides two central hooks in data path

Ingress: netif receive skb core()

Egress: dev queue xmit()

cls bpf runs eBPF, allows for atomic updates
Fast-path with direct-action (da) mode

Verdicts: ok, shot, stolen, redirect

Offload interface implementable by drivers: nfp

C � LLVM � eBPF � ELF � tc � verifier � JIT � cls bpf � offload

user space, kernel space
Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 4 / 11

XDP (eXpress Data Path)
Objectives and use-cases

Generic framework for high-performance packet processing
Runs eBPF program in driver at earliest possible point
Works in concert with the kernel (same security model, no out-of-tree)
Packet stays in kernel, no need for crossing boundaries
DSR load balancing, forwarding, anti DDoS, firewalling, monitoring
Verdicts: aborted, drop, pass, tx

Currently supported: mlx4, mlx5, nfp, qede, virtio net, i40e∗, bnxt∗

Allows for atomic updates (currently driver dependent)

Offload interface implementable by drivers: nfp

C � LLVM � eBPF � ELF � ip � verifier � JIT � XDP � offload

∗: merge expected soon, patches posted on netdev
user space, kernel space

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 5 / 11

XDP and cls bpf Features
Generic maps (lookup, update, delete): cls bpf XDP

Array map∗ X X
Hash table∗ X X
LRU map∗ X X
LPM trie X X

Specialized maps (used with helpers): cls bpf XDP
Program array X X
Perf event map X X
Cgroups v2 map X

Packet access: cls bpf XDP
Direct packet read X X
Direct packet write X X
Additional metadata in context X
Metadata mangling (proto, type, mark, etc) X †

∗: also as per-CPU and preallocated map flavor
†: not yet seen by stack

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 6 / 11

XDP and cls bpf Features
Packet forwarding: cls bpf XDP

TX to same port X X
TX to any netdevice (including virtual) X ∗

TX to RX X

Miscellaneous: cls bpf XDP
Encapsulation X† X
Headroom mangling X
Tailroom mangling X
Event notification (including payload) X X
Tail calls X X
Checksum mangling X X
Packet cloning X
Cgroups v1/v2 X
Routing realms X
ktime, CPU/NUMA id, rand, trace printk X X

∗: mid/long-term for multiport and different physical device
†: restricted to collect metadata, f.e. vxlan, geneve, gre, ipip, etc

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 7 / 11

iproute2 as eBPF loader
Frontend for loading networking eBPF programs into kernel

Shared backend library for ELF loader

Map relocation, tail call and object pinning handling
cls bpf workflow:
$ clang -O2 -target bpf -o foo.o -c foo.c
tc qdisc add dev em1 clsact
tc filter add dev em1 ingress bpf da obj foo.o sec p1
tc filter add dev em1 egress bpf da obj foo.o sec p2
tc filter del dev em1 ingress
tc filter del dev em1 egress
tc qdisc del dev em1 clsact

XDP workflow:
$ clang -O2 -target bpf -o foo.o -c foo.c
ip [-force] link set dev em1 xdp obj foo.o
ip link set dev em1 xdp off

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 8 / 11

JITs, Offload, Hardening

Available as of today: x86 64, arm64, ppc64, s390x

net.core.bpf jit enable=1

ppc64: initial JIT merged and tail call support added
arm64: tail call support, various optimizations, xadd still missing

Offloading of eBPF to NIC via JIT: nfp

Various hardening measures done by default, f.e. read-only marking
Constant blinding infrastructure

net.core.bpf jit harden=1

Blinding for non-root programs enabled
Rewriting 32/64bit constants generically at BPF instruction level
imm → ((rnd ⊕ imm) ⊕ rnd), insimm → insreg

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 9 / 11

Other Recent Improvements

DWARF support for LLVM eBPF backend

Various verifier improvements wrt LLVM code generation

Dynamic map value and stack access

eBPF hooks for lightweight tunneling and per cgroups v2

Tracepoint infrastructure for eBPF and XDP

eBPF verifier and map selftest suite

kallsym support for JIT images (to be submitted soon)

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 10 / 11

Thanks!
Couple of next steps

Verifier improvements (e.g. logging, pruning)
Widespread XDP support, improved forwarding
Better map memory management
Inline map lookup, bounded loops, etc

Code
cilium project: github.com/cilium

BPF & XDP for containers

git.kernel.org → kernel, iproute2 tree

Further information
netdev conference proceedings
Kernel tree: Documentation/networking/filter.txt

qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf

Daniel Borkmann eBPF in tc’s cls bpf and XDP February 4, 2017 11 / 11

github.com/cilium
git.kernel.org
Documentation/networking/filter.txt
qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf

