eBPF and XDP walkthrough and recent updates

Daniel Borkmann
<daniel@iogearbox.net>
cilium project

fosdem17, February 4, 2017

Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017

1/11

Big Picture: eBPF and Networking

eBPF: efficient, generic in-kernel bytecode engine

Today used mainly in networking, tracing, sandboxing

m XDP, tc, socket reuseport/demux/filter, perf, bcc, seccomp, ...

cls_bpf programmable packet processor in tc subsystem
m Attachable to ingress, egress of kernel's networking data path
m XDP programmable, high-performance, in-kernel packet processor
m Attachable to ingress directly at driver's early receive path
m cls_bpf complementary to XDP

m Attachable on ingress and egress to all net devices

m skb as input context to leverage stack functionality

Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017

2/11

eBPF Architecture

m 11 64bit registers, 32bit subregisters, stack, pc

m Instructions 64bit wide, max 4096 instructions/program

m Various new instructions over cBPF

m Core components of architecture

Read/write access to context
Helper function concept
Maps, arbitrary sharing

Tail calls

Object pinning

cBPF to eBPF translator
LLVM eBPF backend

m eBPF JIT backends implemented by archs

m Management via bpf (2), stable ABI

Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017

3/11

tc's cls_bpf and sch_clsact

sch_clsact container for tc classifier and actions

Provides two central hooks in data path

m Ingress: _netif receive_skb_core()

m Egress: __dev_queue xmit ()

cls_bpf runs eBPF, allows for atomic updates

Fast-path with direct-action (da) mode

m Verdicts: ok, shot, stolen, redirect
m Offload interface implementable by drivers: nfp

m C - LLVM — eBPF = ELF — tc — verifier » JIT — cls_bpf — offload

user space, kernel space
Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017 4/11

XDP (eXpress Data Path)

m Objectives and use-cases

m Generic framework for high-performance packet processing

Runs eBPF program in driver at earliest possible point

Works in concert with the kernel (same security model, no out-of-tree)
Packet stays in kernel, no need for crossing boundaries

DSR load balancing, forwarding, anti DDoS, firewalling, monitoring

Verdicts: aborted, drop, pass, tx

Currently supported: mix4, mix5, nfp, gede, virtio_net, i40e*, bnxt*

m Allows for atomic updates (currently driver dependent)
m Offload interface implementable by drivers: nfp

m C - LLVM — eBPF — ELF — ip — verifier - JIT — XDP — offload

*: merge expected soon, patches posted on netdev
user space, kernel space
Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017 5/11

XDP and cls_bpf Features

m Generic maps (lookup, update, delete):

Array map*
Hash table*
LRU map*
LPM trie

m Specialized maps (used with helpers):

Program array
Perf event map
Cgroups v2 map

m Packet access:
Direct packet read
Direct packet write
Additional metadata in context
Metadata mangling (proto, type, mark, etc)

x: also as per-CPU and preallocated map flavor
T: not yet seen by stack
Daniel Borkmann eBPF in tc’s cls_bpf and XDP

XDP
v
v
v
v

XDP

XDP

February 4, 2017

6/11

XDP and cls_bpf Features

m Packet forwarding: cls_bpf XDP
TX to same port v v
TX to any netdevice (including virtual) v *
TX to RX v

m Miscellaneous: cls_bpf XDP
Encapsulation i v
Headroom mangling v
Tailroom mangling v
Event notification (including payload) v v
Tail calls v v
Checksum mangling v v
Packet cloning v
Cgroups v1/v2 v
Routing realms v
ktime, CPU/NUMA id, rand, trace printk v v

*: mid/long-term for multiport and different physical device
t: restricted to collect metadata, f.e. vxlan, geneve, gre, ipipsetc
Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017 7/11

iproute2 as eBPF loader

Frontend for loading networking eBPF programs into kernel

Shared backend library for ELF loader

Map relocation, tail call and object pinning handling

cls_bpf workflow:

$ clang -02

#

H OH O HH

tc
tc
tc
tc
tc
tc

qdisc
filter
filter
filter
filter
qdisc

-target
add dev
add dev
add dev
del dev
del dev
del dev

XDP workflow:

$ clang -02 -target bpf
ip [-force] link set dev eml xdp obj foo.o
ip link set dev eml xdp off

Daniel Borkmann

bpf
eml
eml
eml
eml
eml
eml

eBPF in tc’s cls_bpf and XDP

-0 foo.o -c foo.c

clsact

ingress bpf da obj foo.o sec pl
egress bpf da obj foo.o sec p2
ingress

egress

clsact

-0 foo.o -c foo.c

February 4, 2017

8/11

JITs, Offload, Hardening

m Available as of today: x86_64, arm64, ppc64, s390x

m net.core.bpf_jit_enable=1
m ppc64: initial JIT merged and tail call support added

m arm64: tail call support, various optimizations, xadd still missing
m Offloading of eBPF to NIC via JIT: nfp

m Various hardening measures done by default, f.e. read-only marking
m Constant blinding infrastructure

net.core.bpf_jit_harden=1
Blinding for non-root programs enabled

Rewriting 32/64bit constants generically at BPF instruction level

imm — ((rnd @ imm) @© rnd), inSimm — ins,g

Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017 9/11

Other Recent Improvements

m DWAREF support for LLVM eBPF backend

m Various verifier improvements wrt LLVM code generation
m Dynamic map value and stack access

m eBPF hooks for lightweight tunneling and per cgroups v2

Tracepoint infrastructure for eBPF and XDP

m eBPF verifier and map selftest suite

kallsym support for JIT images (to be submitted soon)

Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017 10/11

Thanks!

m Couple of next steps
m Verifier improvements (e.g. logging, pruning)
m Widespread XDP support, improved forwarding
m Better map memory management

m Inline map lookup, bounded loops, etc
m Code
m cilium project: github.com/cilium
m BPF & XDP for containers
m git.kernel.org — kernel, iproute2 tree
m Further information

m netdev conference proceedings
m Kernel tree: Documentation/networking/filter.txt
m gmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf

Daniel Borkmann eBPF in tc's cls_bpf and XDP February 4, 2017 1/11

github.com/cilium
git.kernel.org
Documentation/networking/filter.txt
qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf

